Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
STAR Protoc ; 5(2): 102989, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38568817

RESUMEN

CNS injuries are associated with profound changes in cell organization. This protocol presents a stepwise approach to quantitatively describe the spatiotemporal changes in glial cell rearrangement in the injured murine brain, which is applicable to other biological contexts. Herein, we apply common immunolabeling of neurons and glial cells and wide-field microscopy imaging. Then, we employ computational tools for alignment to the Allen Brain Atlas, unbiased/automatic detection of cells, generation of point patterns, and data analysis. For complete details on the use and execution of this protocol, please refer to Manrique-Castano et al.1.

2.
J Cereb Blood Flow Metab ; 43(11): 1873-1890, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37340860

RESUMEN

Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Monocitos , Ratones , Animales , Monocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Inmunidad , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Ratones Endogámicos C57BL
4.
Eur J Neurosci ; 56(11): 6003-6021, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36226387

RESUMEN

Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer's disease (AD), which has been proposed to be driven by an abnormal neuroinflammatory response affecting cognitive function. However, the impact of T2DM on hippocampal function and synaptic integrity during aging has not been investigated. Here, we investigated the effects of aging in T2DM on AD-like pathology using the leptin receptor-deficient db/db mouse model of T2DM. Our results indicate that adult T2DM mice exhibited impaired spatial acquisition in the Morris water maze (MWM). Morphological analysis showed an age-dependent neuronal loss in the dentate gyrus. We found that astrocyte density was significantly decreased in all regions of the hippocampus in T2DM mice. Our analysis showed that microglial activation was increased in the CA3 and the dentate gyrus of the hippocampus in an age-dependent manner in T2DM mice. However, the expression of presynaptic marker protein (synaptophysin) and the postsynaptic marker protein [postsynaptic density protein 95 (PSD95)] was unchanged in the hippocampus of adult T2DM mice. Interestingly, synaptophysin and PSD95 expression significantly decreased in the hippocampus of aged T2DM mice, suggesting an impaired hippocampal synaptic integrity. Cytokine profiling analysis displayed a robust pro-inflammatory cytokine profile in the hippocampus of aged T2DM mice compared with the younger cohort, outlining the role of aging in exacerbating the neuroinflammatory profile in the diabetic state. Our results suggest that T2DM impairs cognitive function by promoting neuronal loss in the dentate gyrus and triggering an age-dependent deterioration in hippocampal synaptic integrity, associated with an aberrant neuroinflammatory response.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Navegación Espacial , Ratones , Animales , Sinaptofisina/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
5.
Brain Behav Immun ; 99: 363-382, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343617

RESUMEN

Alzheimer's disease (AD) pathology is characterized by amyloid-ß (Aß) deposition and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Monocytes have been recently shown to play a major role in modulating Aß pathology, and thereby have been pointed as potential therapeutic targets. However, the main challenge remains in identifying clinically relevant interventions that could modulate monocyte immune functions in absence of undesired off-target effects. Erythropoietin (EPO), a key regulator of erythrocyte production, has been shown to possess immunomodulatory potential and to provide beneficial effects in preclinical models of AD. However, the transition to use recombinant human EPO in clinical trials was hindered by unwanted erythropoietic effects that could lead to thrombosis. Here, we used a recently identified non-erythropoietic analogue of EPO, ARA 290, to evaluate its therapeutic potential in AD therapy. We first evaluated the effects of early systemic ARA 290 administration on AD-like pathology in an early-onset model, represented by young APP/PS1 mice. Our findings indicate that ARA 290 early treatment decelerated Aß pathology progression in APP/PS1 mice while improving cognitive functions. ARA 290 potently increased the levels of total monocytes by specifically stimulating the generation of Ly6CLow patrolling subset, which are implicated in clearing Aß from the cerebral vasculature, and subsequently reducing overall Aß burden in the brain. Moreover, ARA 290 increased the levels of monocyte progenitors in the bone marrow. Using chimeric APP/PS1 mice in which Ly6CLow patrolling subset are selectively depleted, ARA 290 was inefficient in attenuating Aß pathology and ameliorating cognitive functions in young animals. Interestingly, ARA 290 effects were compromised when delivered in a late-onset model, represented by aged APP1/PS1. In aged APP/PS1 mice in which AD-like pathology is at advanced stages, ARA 290 failed to reverse Aß pathology and to increase the levels of circulating monocytes. Our study suggests that ARA 290 early systemic treatment could prevent AD-like progression via modulation of monocyte functions by specifically increasing the ratio of patrolling monocytes.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Monocitos/patología , Presenilina-1
6.
Neurobiol Dis ; 161: 105561, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34780863

RESUMEN

Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Encéfalo/metabolismo , COVID-19/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia/metabolismo , Inflamación/metabolismo , Pericitos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Actinas/metabolismo , Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Animales , Encéfalo/irrigación sanguínea , COVID-19/fisiopatología , Señalización del Calcio , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/genética , Factores Inhibidores de la Migración de Macrófagos/efectos de los fármacos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Miofibroblastos , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Mucosa Nasal , Estrés Nitrosativo , Estrés Oxidativo , Pericitos/citología , Pericitos/efectos de los fármacos , Fenotipo , Receptor Notch3/metabolismo , Receptores de Coronavirus/efectos de los fármacos , Receptores de Coronavirus/genética , Receptores de Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/farmacología
7.
Front Aging Neurosci ; 13: 727590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566627

RESUMEN

Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer's disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.

8.
Front Immunol ; 12: 813536, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173711

RESUMEN

Alzheimer's disease (AD) constitutes a major cause of dementia, affecting more women than men. It is characterized by amyloid-ß (Aß) deposition and neurofibrillary tangles (NFTs) formation, associated with a progressive cognitive decline. Evidence indicates that AD onset increases the prevalence of cerebral microinfarcts caused by vascular pathologies, which occur in approximately in half of AD patients. In this project, we postulated that multifocal cerebral microinfarcts decisively influence early AD-like pathology progression in a sex dependent manner in young APP/PS1 mice. For this purpose, we used a novel approach to model multifocal microinfarcts in APP/PS1 mice via the sporadic occlusions of the microvasculature. Our findings indicate that microinfarcts reduced Aß deposits without affecting soluble Aß levels in the brain of male and female APP/PS1 mice, while causing rapid and prolonged cognitive deficits in males, and a mild and transient cognitive decline in females. In male APP/PS1 mice, microinfarcts triggered an acute hypoperfusion followed by a chronic hyperperfusion. Whereas in female APP/PS1 mice, microinfarcts caused an acute hypoperfusion, which was recovered in the chronic phase. Microinfarcts triggered a robust microglial activation and recruitment of peripheral monocytes to the lesion sites and Aß plaques more potently in female APP/PS1 mice, possibly accounting for the reduced Aß deposition. Finally, expression of Dickkopf-1 (DKK1), which plays a key role in mediating synaptic and neuronal dysfunction in AD, was strongly induced at the lesion sites of male APP/PS1 mice, while its expression was reduced in females. Our findings suggest that multifocal microinfarcts accelerate AD pathology more potently in young males compared to young females independently upon Aß pathology via modulation of neurovascular coupling, inflammatory response, and DKK1 expression. Our results suggest that the effects of microinfarcts should be taken into consideration in AD diagnosis, prognosis, and therapies.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Infarto Cerebral/complicaciones , Infarto Cerebral/patología , Susceptibilidad a Enfermedades , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Conducta Animal , Biomarcadores , Infarto Cerebral/etiología , Disfunción Cognitiva , Diagnóstico por Imagen , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Inmunofenotipificación , Recuento de Leucocitos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Microglía/metabolismo , Monocitos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Factores Sexuales
9.
Front Physiol ; 11: 565667, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071819

RESUMEN

The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.

10.
Neurochem Int ; 141: 104881, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33068684

RESUMEN

Alzheimer's disease (AD) constitutes the leading cause of dementia worldwide. It is associated to amyloid-ß (Aß) aggregation and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Evidence suggests that the canonical Wnt pathway is deregulated in AD. Pathway activity is mediated by ß-catenin stabilization in the cytosol, and subsequent translocation to the nucleus to regulate the expression of several genes implicated in brain homeostasis and functioning. It was recently proposed that Dickkopf-related protein-1 (DKK1), an endogenous antagonist of the pathway, might be implicated in AD pathogenesis. Here, we hypothesized that canonical Wnt pathway deactivation associated to DKK1 induction contributes to late-onset AD pathogenesis, and thus DKK1 neutralization could attenuate AD pathology. For this purpose, human post-mortem AD brain samples were used to assess pathway activity, and aged APPswe/PS1 mice were used to investigate DKK1 in late-onset AD-like pathology and therapy. Our findings indicate that ß-catenin levels progressively decrease in the brain of AD patients, correlating with the duration of symptoms. Next, we found that Aß pathology in APPswe/PS1 mediates DKK1 induction in the brain. Pharmacological neutralization of DKK1's biological activity in APPswe/PS1 mice restores pathway activity by stabilizing ß-catenin, attenuates Aß pathology, and ameliorates the memory of mice. Attenuation of AD-like pathology upon DKK1 inhibition is accompanied by a reduced protein expression of beta-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1). Moreover, DKK1 inhibition enhances vascular density, promotes blood-brain barrier (BBB) integrity by increasing claudin 5, glucose transporter-1 (GLUT1), and ATP-binding cassette sub-family B member-1 (ABCB1) protein expression, as well as ameliorates synaptic plasticity by increasing brain-derived neurotrophic factor (BDNF), and postsynaptic density protein-95 (PSD-95) protein expression. DKK1 conditional induction reduces claudin 5, abcb1, and psd-95 mRNA expression, validating its inhibition effects. Our results indicate that neutralization of DKK1's biological activity attenuates AD-like pathology by restoring canonical Wnt pathway activity.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/psicología , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Conducta Animal , Barrera Hematoencefálica/patología , Encéfalo/patología , Claudina-5/genética , Homólogo 4 de la Proteína Discs Large/genética , Humanos , Ratones , Fragmentos de Péptidos/genética , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
11.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961703

RESUMEN

Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata , Microglía/inmunología , Enfermedades Neurodegenerativas/inmunología , Neurogénesis/inmunología , Adulto , Encéfalo/patología , Humanos , Microglía/patología , Enfermedades Neurodegenerativas/patología
12.
Mol Neurobiol ; 56(9): 6521-6538, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30852795

RESUMEN

Stroke induces blood-brain barrier (BBB) breakdown, which promotes complications like oedema and hemorrhagic transformation. Administration of recombinant tissue plasminogen activator (rtPA) within a therapeutic time window of 4.5 h after stroke onset constitutes the only existing treatment. Beyond this time window, rtPA worsens BBB breakdown. Canonical Wnt pathway induces BBB formation and maturation during ontogeny. We hypothesized that the pathway is required to maintain BBB functions after stroke; thus, its activation might improve rtPA therapy. Therefore, we first assessed pathway activity in the brain of mice subjected to transient middle cerebral artery occlusion (MCAo). Next, we evaluated the effect of pathway deactivation early after stroke onset on BBB functions. Finally, we assessed the impact of pathway activation on BBB breakdown associated to delayed administration of rtPA. Our results show that pathway activity is induced predominately in endothelial cells early after ischemic stroke. Early deactivation of the pathway using a potent inhibitor, XAV939, aggravates BBB breakdown and increases hemorrhagic transformation incidence. On the other hand, pathway activation using a potent activator, 6-bromoindirubin-3'-oxime (6-BIO), reduces the incidence of hemorrhagic transformation associated to delayed rtPA administration by attenuating BBB breakdown via promotion of tight junction formation and repressing endothelial basal permeability independently of rtPA proteolytic activity. BBB preservation upon pathway activation limited the deleterious effects of delayed rtPA administration. Our study demonstrates that activation of the canonical Wnt pathway constitutes a clinically relevant strategy to extend the therapeutic time window of rtPA by attenuating BBB breakdown via regulation of BBB-specific mechanisms.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Vía de Señalización Wnt , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/ultraestructura , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Glucosa/deficiencia , Indoles , Inflamación/patología , Ratones Endogámicos C57BL , Microvasos/patología , Neovascularización Fisiológica/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oximas , Oxígeno , Permeabilidad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Tejido Plasminógeno/farmacología , Vía de Señalización Wnt/efectos de los fármacos
14.
Mol Neurobiol ; 55(5): 3611-3626, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28290152

RESUMEN

Ischemic stroke triggers endogenous angiogenic mechanisms, which correlates with longer survival in patients. As such, promoting angiogenesis appears to be a promising approach. Experimental studies investigated mostly the potent angiogenic factor vascular endothelial growth factor isoform-A (VEGF-A). However, VEGF-A increases the risk of destabilizing the brain microvasculature, thus hindering the translation of its usage in clinics. An attractive alternative VEGF isoform-B (VEGF-B) was recently reported to act as a survival factor rather than a potent angiogenic factor. In this study, we investigated the therapeutic potential of VEGF-B in ischemic stroke using different in vivo and in vitro approaches. We showed that the delayed intranasal administration of VEGF-B reduced neuronal damage and inflammation. Unexpectedly, VEGF-B stimulated the formation of stable brain microvasculature within the injured region by promoting the interaction between endothelial cells and pericytes. Our data indicate that the effects of VEGF-B were mediated via its specific receptor VEGF receptor-1 (VEGFR-1) that is predominately expressed in brain pericytes. Importantly, VEGF-B promoted the survival of pericytes, and not brain endothelial cells, by inducing expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and the main protein involved in energy homeostasis AMP-activated protein kinase α (AMPKα). Moreover, we showed that VEGF-B stimulated the pericytic release of factors stimulating a "reparative angiogenesis" that does not compromise microvasculature stability. Our study unraveled hitherto unknown role of VEGF-B/VEGFR-1 signaling in regulating the function of pericytes. Furthermore, our findings suggest that brain microvasculature stabilization via VEGF-B constitutes a safe therapeutic approach for ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Pericitos/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Factor B de Crecimiento Endotelial Vascular/uso terapéutico , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Masculino , Ratones , Neovascularización Patológica/metabolismo , Pericitos/metabolismo , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/farmacología
15.
Neuro Oncol ; 19(9): 1173-1182, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541444

RESUMEN

The pericyte, a constitutive component of the central nervous system, is a poorly understood cell type that envelops the endothelial cell with the intended purpose of regulating vascular flow and endothelial cell permeability. Previous studies of pericyte function have been limited to a small number of disease processes such as ischemic stroke and Alzheimer's disease. Recently, publications have postulated a link between glioma stem cell differentiation and pericyte function. These studies suggest that there may be an important interaction of pericytes with tumor cells and other components of the tumor microenvironment in malignant primary glial neoplasms, most notably glioblastoma. This potential cellular interaction underscores the need to pursue more investigations of pericytes in malignant brain tumor biology. In this review, we summarize the functional roles of pericytes, particularly focusing on changes in pericyte biology during response to immune cells, inflammation, and hypoxic conditions. The information presented is based on the available data from studies of pericyte function in other central nervous system diseases but will serve as a foundation for research investigations to further understand the role of pericytes in malignant gliomas.


Asunto(s)
Barrera Hematoencefálica/patología , Neoplasias Encefálicas/patología , Glioma/patología , Pericitos/patología , Enfermedad de Alzheimer/patología , Animales , Humanos , Accidente Cerebrovascular/patología
16.
Int J Mol Sci ; 18(3)2017 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28245599

RESUMEN

Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.


Asunto(s)
Microglía/inmunología , Microglía/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Animales , Biomarcadores , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Comunicación Celular , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Sistema Mononuclear Fagocítico/inmunología , Sistema Mononuclear Fagocítico/metabolismo , Transducción de Señal , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia
17.
Oncotarget ; 7(42): 67808-67827, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27661129

RESUMEN

Alzheimer's disease (AD) is mainly characterized by the accumulation and aggregation of amyloid-ß (Aß) peptides in brain parenchyma and cerebral microvasculature. Unfortunately, the exact causes of the disease are still unclear. However, blood-brain barrier (BBB) dysfunction and activation of inflammatory pathways are implicated in AD pathogenesis. Importantly, advanced age and high fat diet, two major risk factors associated with AD, were shown to deeply affect BBB function and modulate the immune response. As such, this study evaluated the impact of age and high fat diet on AD progression. For this purpose, 3 (i.e. young) and 12 (i.e. aged) months old APPswe/PS1 mice were fed for 4 months with a high fat diet (i.e. Western diet (WD)) or normal diet. Interestingly, neurobehavioral tests revealed that WD accelerates age-associated cognitive decline without affecting parenchymal Aß. Nonetheless, WD decreases matrix metalloproteinase-9 enzymatic activity and brain-derived neurotrophic factor mRNA and protein levels in brain, suggesting loss of synaptic plasticity. In the periphery, WD promotes systemic inflammation by increasing the levels of blood-circulating monocytes and monocyte chemotactic protein-1 production, which is accompanied by an augmentation of oxidized-low density lipoprotein levels in blood circulation. At the BBB, WD potentiates the age-induced increase of Aß 1-40 accumulation and exacerbates the oxidative stress, specifically in cerebral microvasculature. These effects were accompanied by the dysfunction of pericytes, thus altering BBB functionality without compromising its integrity. Our study provides new insights into the implication of high fat diet in accelerating the cognitive decline in AD.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Fragmentos de Péptidos/metabolismo
19.
Front Cell Dev Biol ; 4: 72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446922

RESUMEN

Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that they are monocytic-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a resting phenotype characterized by the presence of dense branching processes, called ramifications. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, such as molecular factors associated to brain damage or infection, they get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Here, we review the origin of microglia and we summarize the main molecular signals involved in controlling their function under physiological conditions. In addition, their implication in the pathogenesis of multiple sclerosis and stress is discussed.

20.
Oncotarget ; 7(24): 35552-35561, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27248662

RESUMEN

Stroke is associated with neuroinflammation, neuronal loss and blood-brain barrier (BBB) breakdown. Thus far, recombinant tissue-type plasminogen activator (rtPA), the only approved treatment for acute ischemic stroke, increases the risk of intracerebral hemorrhage and is poorly efficient in disaggregating platelet-rich thrombi. Therefore, the development of safer and more efficient therapies is highly awaited. Encouraging neuroprotective effects were reported in mouse models of ischemic stroke following administration of erythropoietin (EPO). However, previous preclinical studies did not investigate the effects of EPO in focal ischemic stroke induced by a platelet-rich thrombus and did not consider the implication of age. Here, we performed middle cerebral artery occlusion by inducing platelet-rich thrombus formation in chimeric 5- (i.e. young) and 20- (i.e. aged) months old C57BL/6 mice, in which hematopoietic stem cells carried the green fluorescent protein (GFP)-tag. Recombinant human EPO (rhEPO) was administered 24 hours post-occlusion and blood-circulating monocyte populations were studied by flow cytometry 3 hours post-rhEPO administration. Twenty-four hours following rhEPO treatment, neuronal loss and BBB integrity were assessed by quantification of Fluoro-Jade B (FJB)-positive cells and extravasated serum immunoglobulins G (IgG), respectively. Neuroinflammation was determined by quantifying infiltration of GFP-positive bone marrow-derived cells (BMDC) and recruitment of microglial cells into brain parenchyma, along with monocyte chemotactic protein-1 (MCP-1) brain protein levels. Here, rhEPO anti-inflammatory properties rescued ischemic injury by reducing neuronal loss and BBB breakdown in young animals, but not in aged littermates. Such age-dependent effects of rhEPO must therefore be taken into consideration in future studies aiming to develop new therapies for ischemic stroke.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Encéfalo/metabolismo , Eritropoyetina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Factores de Edad , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Isquemia Encefálica/complicaciones , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Eritropoyetina/efectos adversos , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Arteria Cerebral Media/patología , Fármacos Neuroprotectores/efectos adversos , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/uso terapéutico , Accidente Cerebrovascular/complicaciones , Trombosis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...